SRI International

Da Vinci, Taurus, and Opportunities in Teleoperation

Thomas Low

Associate Director, Robotics Program

thomas.low@sri.com

650 859-2103

M4 1992-1994

- Created by Phil Green of SRI
- Four DOF plus Gripper x 2
- High fidelity haptic feedback
- Stereoscopic proprioceptive display
- Motion, force an video scaling
- Developed with support of SRI, NASA, and DARPA
- Goal was remote battlefield surgical control of hemorrhage.

US 6788999 B2

Workstation

Remote Surgical Unit

First MIS 1994

 After fruitless effort to convince VC's in the value of long-distance surgery, the new target of improving the effectiveness of Minimally Invasive Surgery was identified, and Intuitive Surgical Inc. was created.

M7 1998-2011

DARPA interest in remote open surgery on the battlefield remained strong. Supported the development of "Medfast" and the M7 Telemanipulator.

- 6 DOF plus gripper x 2 arms
- Haptics on all axis
- Counter-balanced design
- Similar Master and Slave hardware
- Led to a series of experiments and demonstrations
 - NEEMO 9: Ontario (St. Josephs Medical Center) to Key Largo (Aquarius) testing long distance surgical and sample sorting with variable delay
 - NEEMO 12: Autonomous needle targeting and vessel cannulation
 - NASA micro gravity: Robot mediated surgical tasks in dynamic environment. Developed motion compensation algorithms
 - Plugfest: University of Washington led interoperability experiments

M7 Capabilities and Applications

M7 Telemanipulation

DARPA Trauma Pod 2007

- Eliminate all human presence from battlefield stabilization surgical OR
- Manage operator workload and provide Situational Awareness
 - Voice and gesture control
 - Patient 3-D scanning and remote assessment
 - Integrated preoperative CT registration and navigation
 - Automated tool changing, supply unpackaging, dispensing, disposal and tracking
 - Concurrent system simulation and visualization

Integrated Robotic Operating Room

TraumaPod
Operations Overview

January, 2007

TAURUS

 Enhance capabilities of existing IED robot platforms with da Vinci like dexterity, visualization and precision at affordable cost

SRI INTERNATIONAL

The Taurus Dexterous
Telemanipulator on ANDROS
platform

HAND (DARPA ARM-H)

Develop high dexterity and low cost hand for IED defeat and DARPA

robotics challenge

Low Cost Dexterous Robot Hands

DARPA DRC Hand
Rugged hands for humanoids

Operator Tracking

Mouse
Joystick (rate control)
Kinematic model of slave
General 6 DOF (Mechanical, Optical,
Magnetic, RF)
3D visual tracking
LIDAR, structured light, stereo
processing

OCU Alternative OCU input devices: Phantom Omni (left), SpaceNavigator (center), Falcon (right), Omega.7 (Bottom Center), Razer Hydra (Left)

Operator Display Options

- 2-D or stereoscopic screen
- Autostereoscopic screen
- Immersive binocular displays
- Head Mounted Display

Challenges

- Telepresence: How hard can it be?
 - Getting a robot to mimic your motions is the easy part. 95% of the effort is in
 - Startup and closedown
 - Singularities
 - Workspace limits
 - Clutching and workspace scaling
 - Effective User Interface and providing Situational Awareness
 - Direct low latency arm control
 - Safety
 - Real-world communications
 - Mapping X DOF input to X+n DOF output

Opportunities

- Early adoption will be in domains where value is highest
 - Operator Safety: Hazardous materials or device handling, environments incompatible with survival.
 - Remoteness: Occasional need for specialized expertise in geographically remote and distributed areas
 - Security: Activities where prohibited personnel action can have grave societal consequences
 - Clean handling of contamination-sensitive materials
- Labor force flexibility
 - Production near point of consumption with remote labor force
 - Labor flexibility and scalability
 - Labor force economics

Topics for discussion

- Haptics
- Clutching and Alignment
- Stereopsis
- Audio Cues
- Autonomy
- Precision
- Latency

- Safety
- Security
- Situational Awareness
- Bandwidth
- Control Update Rate
- Metrics
- Tools and tool changers
- Mobility

What's Next?

- We are continuing to push the boundaries of both autonomous and teleoperated systems
- Out focus has been on efficiency and affordability (neither of which have been significant concerns before now)
- Humanoid form has advantages, but comes at a significant cost
- High performance 7 DOF arms in final stages of development
- Application of telelabor has the potential to be disruptive, both in terms of energy use, and in impact on global labor markets.

